View-Oriented Transactional Memory

Kai-Cheung Leung
Zhiyi Huang

University of Otago

P2S2 2011

Locks vs Transactional Memory (TM)

» Parallel programming is becoming mainstream

» Parallel programming models need to facilitate both
performance and convenience

» In shared-memory models, Shared data generally manged

either by:
Locking

™

Each shared object needed to be accessed
atomically is protected by a lock. Lock
acquired manually before access and
released after access

transactions used to access shared data
atomically. All processes enter transactions
freely and commit at the end of transactions,
and if conflict occurs, one or more
transactions abort and restart

» Problems in lock-based models:
» Manually arranging fine-grain locks is tedious, and prone to
errors such as deadlock and data race
» Coarse grain locks has little concurrency
» Problems in TM models:
» When conflict rare, encourage high concurrency, but...
» When conflict high, transactions can abort each other and
little progress is made

Solution: Restricted Admission Control (RAC)

» Shared memory is like a room, and

» traditional TM models freely admits anyone into the room
regardless of contention.

» RAC is like the doorman, who limits the number of people
in the room depending on contention.

» RAC allows Q people in the room at a given time.
1<=Q<=N

» When Q = N, unrestricted admission, likes traditional TM

» When Q = 1, likes lock

Another problem...

» However contention in different places in a room is different

» e.g. many people fight for access to the PlayStation in the
room,

» but few hard-working students are interested in accessing
the bookself at the other side of the room

» However unreasonable to restrict access to the book
because of high contention in the PlayStation, and would
unnecessarily impede concurrency of the people
(processes) wanting to read the books on the bookshelf

Solution: View-Oriented Transactional Memory

(VOTM)

» View-Oriented Parallel Programming (VOPP) a
data-centric model which:

» Variables private to the process by default

» Each shared object must be explicited declared as “views”

>

| 4

Views must not overlap
Views are acquired before access and released after
access

» VOTM is to control access to each view with TM, where:

>

A transaction begins when the view is accessed and ends
when the view is released

Therefore shared data that can be accessed together can
be put into the same view

Now each view is guarded by its own doorman (RAC)
individually given the contention of the view

Therefore when admission to the popular PlayStation is
restricted, access to the bookshelf is not affected

Little instrumentation needed to parallelize existing

code with VOTM

T I - N N N I SR

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem val;

Vi

typedef struct List_rec {
Node <*head;
} List;

List %x11_alloc(vid_type vid) {
List #result;
create_view(vid, size, 0);
result = malloc_block(vid, sizeof (result[0]));
acquire_view (vid);
result->head = NULL;
release_view (vid);
return result;

Figure: Code snippet of list allocation in VOTM

ol S - Y N U R SR

void 11_insert (List xlist, Node #xnode, vid_type wvid)
Node =xcurr;
Node *next;

acquire_view (vid);

if (list->head->val >= node->val) {
/* insert node at head x/

node->next = list->head;
list->head = node;
} else {

/* find the right place x/
curr=list->head;

while (NULL != (next = curr->next) &&
next->val < node->val) {
curr = curr—>next;

}

/* now insert x/

node->next = next;

curr->next = node;
}

release_view (vid);

{

Figure: Code snippet of list insertion in VOTM

Performance

Table: Application runtime (s) at N = 16

Application | VOTM | TinySTM | Lock-based
TSP Q=1 52.23 194.73 52.23
Intruder 43.05 127.70 100.62
Bayes 11.15 19.51 30.72
Genome 4.93 5.91 37.48
Labyrinth 35.60 35.08 331.28
Vacation 14.84 141 61.88
SSCA2 8.80 8.77 56.28

Table: Number of transactions and aborts at N = 16

Application | #transactions VOTM TinySTM
TSP Q =1 3,925,092 0 | 4,150,852,440
Intruder 23,428,141 | 10,986,905 | 1,238,254,062
Bayes 1,751 4,591 522,972
Genome 2,472,907 83,273 64,595,381
Labyrinth 1056 196 202
Vacation 4,194,304 1,443 1,059
SSCA2 22,362,292 62 64

Origin of performance gain - Use of multiple views

» Both Bayes and Intruder have a view for the main data
structure, plus one or more queues that are not accessed
together with the main data structure

» In VOTM, these queues are allocated in different views

» Performance of multiple-view VOTM surpasses
TinySTM+RAC

Table: Performance of VOTM and TinySTM + RAC at N = 16

Application VOTM | TinySTM + RAC
time(s) Bayes 11.15 11.97
Intruder 43.05 59.50
#aborts Bayes 4591 4587
Intruder 10986905 10337777

Origin of performance gain - RAC

» Microbenchmarks from Eigenbench confirm RAC can find

Q to optimize performance

Table: Performance of Adaptive RAC in TinySTM-ETL

Microbenchmark time(s) Q #aborts time(s) #aborts time(s) Q #aborts

(RAC) (RAC) (RAC) (Q16) (Q16) (opt) (opt) (opt)
Highcon 25.6 4 9.96k 76.0 648k 25.4 4 717k
FutileStall 3.23 1 7.98 40.3 47.3m 4.21 1 0
StarvingElder 47.0 16 3.05m 46.8 3.02m 46.8 16 3.02m
StarvingWriter 22.1 16 33.2m 21.8 10.6m 21.8 16 10.6m

Table: Performance of Adaptive RAC in TinySTM-CTL

Microbenchmark time(s) Q #aborts time(s) #aborts time(s) Q #aborts

(RAC) (RAC) (RAC) (Q16) (Q16) (opt) (opt) (opt)
Highcon 15.0 16 2.98k 15.0 3.01k 15.0 16 3.01k
FutileStall 3.33 1 46.5k 7.73 3.01m 4.86 1 0
StarvingElder 51.5 16 1.05m 51.2 1.05m 51.2 16 1.05m
StarvingWriter 19.2 16 3.83k 19.2 3.80k 19.2 16 3.80k

Conclusion

» VOTM maximizes both progress and concurrency by
allowing shared data with different access pattterns to be
allocated into different views and use RAC to optimize of
each view individualy according to its contention

» Experimental results confirm VOTM has superior
performance to both TM and lock-based models

» When a low-contention view held for long time, VOTM has
concurrency of TM, but locks will have poor concurrency.

» VOTM can reduce admission quota when view has high
contention, thus improves progress while maximizes
concurrency.

Current Work - RAC theoretical model

» We have developed a theoretical model for RAC, that
suggests time spent in aborted and successful
transactions should be used to calculate whether the
admission quota Q needs to be adjusted:

5(Q) = CPUcyclesaported tx
CPUcy C/essuccessful_tx *(Q—1)

and if §(Q) > 1, then Q should be decreased

(1)

Future Works

» Will extend the theoretical analysis to show how splitting
shared data in multiple views improve performance in
VOTM

» Implement VOTM on a managed language so that view
creation and acceess checked at compile time, to realize
the automatic view access management in the Maotai 3.0
paper

» Maotai 3.0: Automatic Detection of View Access in VOPP,
Leung, K.C. and Huang Z., In Proceedings of the Eleventh
International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT 2010).

pp.138-147, IEEE Computer Society (2010), Wuhan.

